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SUMMARY

Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high-
order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide
variety of applications, but are rather demanding in terms of computational resources. In order to improve
the computational efficiency of this class of methods a p-multigrid solution strategy has been developed,
which is based on a semi-implicit Runge–Kutta smoother for high-order polynomial approximations and
the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the
proposed approach is demonstrated by comparison with p-multigrid schemes employing purely explicit
smoothing operators for several 2D inviscid test cases. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Discontinuous Galerkin (DG) methods, originally introduced for purely advective problems [1–5]
and successively extended to advection–diffusion [6–9] and to purely elliptic problems [10], are
nowadays adopted in a wide variety of applications.

DG methods are finite element methods in which the solution is approximated by means of
piecewise continuous functions inside elements with no global continuity requirement. The lack
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of global continuity constraints leads to a discrete approximation characterized by geometrical
flexibility. High-order accurate schemes can in fact be constructed on arbitrary and possibly
nonconforming grids. Elements of different order of accuracy can be easily accommodated in the
same grid, thus opening the way to a straightforward implementation of ‘hp’ adaptive solution
strategies. The compactness of the scheme is particularly advantageous when an implicit time
advancement scheme is employed and/or for a parallel implementation of the method. The price
to pay for robustness, accuracy, and flexibility offered by DG methods is their relatively high
computational cost and storage requirement.

The DG space discretized equations can be advanced in time using different time integration
schemes. Explicit Runge–Kutta (RK) methods are very effective for the solution of unsteady
problems characterized by strong discontinuities and/or fast space–time oscillations, and can
match in time the high-order accuracy of the DG discretization while retaining total varia-
tion stability, see e.g. [3, 4, 11]. However, for large-scale simulations and/or for high-order
polynomial approximations, the rate of convergence can be extremely slow, resulting in inef-
ficient solution techniques. In order to improve the computational efficiency of DG methods,
implicit time discretization schemes [12, 13], h- and p-multigrid strategies [14–18] have been
considered.

Implicit methods require considerable computational resources due to the solution of the linear
system arising at each time step and a considerable amount of memory to store the Jacobian
matrix, which may be prohibitive for a large-scale problem and high-order solutions. Multigrid
methods offer an alternative and efficient approach to steady-state solution. While in the clas-
sical h-multigrid method the discrete equations are solved on a series of recursively coarsened
grids, in the p-multigrid algorithm the equations are solved by considering a series of progres-
sively lower-order approximations on the same grid. Several p-multigrid algorithms for DG space
approximations have been recently proposed in the literature for the inviscid [16, 18] as well as
for viscous flows [17], showing that this solution approach is perfectly suited to the DG method.
Notice, however, that this work is focused on DG p-multigrid algorithms for purely inviscid
flows.

In the p-multigrid context the performance of the RK explicit schemes as smoother is quite
disappointing [18], especially for higher-order schemes. Differently from previous methods, in
this paper we propose an improvement of the p-multigrid scheme originally introduced in [16],
which employs a semi-implicit RK smoother for Pk polynomial approximation if k>0, and the
implicit backward Euler smoother for P0 polynomial approximation. The proposed approach has
been compared with three different p-multigrid smoothers:

• semi-implicit RK;
• explicit RK;
• explicit RK for Pk polynomial approximation if k>0, and the implicit backward Euler for

P0 polynomial approximation.

The comparison shows a considerable reduction of the computational time required by the proposed
method with respect to other smoothers.

The organization of this paper is as follows: in Section 2 the DG discretization of the Euler
equations is briefly presented, Section 3 describes the p-multigrid algorithm, and Section 4 shows
the computed results for the subsonic inviscid flow through a channel with a bump, for the
subsonic inviscid flow around a circle, and for the subsonic inviscid flow around a NACA0012
airfoil.
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2. DG FORMULATION

We will first briefly present the DG space discretization of the Euler equations, which can be
written in conservation form as

�u
�t

+∇ ·F(u)=0 (1)

with suitable initial and boundary conditions. The conservative variables u and the Cartesian
components f (u) and g (u) of the flux function F (u) are given in the 2D case by

u=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

�e0

�vx

�vy

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ ; f(u)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�vx

�h0vx

�v2x +P

�vyvx

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
; g(u)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�vy

�h0vy

�vxvy

�v2y+P

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2)

where � is the fluid density, vx and vy are the Cartesian velocity components, P is the pressure,
e0 is the total (or stagnation) internal energy, and h0=e0+P/� is the total enthalpy. By assuming
that the fluid behaves as a polytropic ideal gas, the pressure can be computed as P=(�−1)[�e0−
�(v2x +v2y)/2], where �=Cp/Cv indicates the ratio between the specific heats of the fluid.

Multiplying Equation (1) by a test function v and integrating by parts over the domain � leads
to the weak formulation∫

�
v
�u
�t

d�+
∮

��
vF(u�) ·nd�−

∫
�

∇v ·F(u)d�=0 ∀v (3)

where �� denotes the boundary of �, n the unit outward normal vector to the boundary, and u�

denotes a ‘boundary state,’ which depends on the prescribed boundary data.
Let �h be an approximation of the domain �, andTh ={e} a triangulation of �h , i.e. a collection

of N ‘finite elements’ e of domain �e and boundary ��e, and letVh denote the space of piecewise
polynomial functions on the element e of Th , i.e.

Vh ={vh ∈L2(�h)
d+2 :vh |�e ∈Pk,∀e∈Th}

where Pk(�e) is the space of polynomials of degree at most k in the element e. Notice that the
functions in Vh are in general discontinuous at element interfaces, and that the polynomial order
k may in general be different from element to element, thus opening the way to a straightforward
implementation of a p-adaptive solution strategy.

The DG approximation of Equation (3) for a generic element e∈Th reads as follows: find
uh ∈Vh so that∫

�e

vh
�uh
�t

d�+
∮

��e

vhh(uh,u
+
h ,n)d�−

∫
�e

∇vh ·F(uh)d�=0 (4)

holds for an arbitrary function vh ∈Vh . Notice that the flux on ��e is evaluated by means of
a ‘numerical’ flux function h(uh,u

+
h ,n), which depends on the solution vector uh associated

to e, on the solution vector u+
h associated to the neighbors of e (or on the boundary data for a

boundary side), and on the unit vector n. The numerical flux function is introduced in order to
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uniquely define the flux at the element interfaces—thus obtaining a consistent and conservative
approximation of (3)—and to weakly prescribe the boundary data. For an internal interface, any of
the numerical flux functions commonly considered in the finite volume method can be used. In the
present work we have used the ‘exact’ Godunov flux function, i.e. the exact solution of a planar
Riemann problem in the direction normal to the boundary. For a boundary face, the numerical flux
function is simply set as h=F(u�) ·n.

By introducing a basis forVh , i.e. a set of M polynomial shape functions �ie(x), i=1, . . . ,M for
each element e∈Th , i.e. e=1, . . . ,N , the discrete functions uh and vh in �e can be expressed as

uh(x, t)|�e =
M∑
i=1

uie(t)�i (x), vh |�e =
M∑
i=1

vie�i (x), x∈�e (5)

The DG formulation (4) must be satisfied for any element e and for any function vh , which is
in general a linear combination of the MN shape function �ie, and is therefore equivalent to the
system of MN equations

M∑
i=1

[∫
�e

� je�ie d�

]
duie(t)
dt

+
∮

��e

� jeh(uh,u
+
h ,n)d�−

∫
�e

∇� je ·F(uh)d�=0 (6)

that can be used to compute the time evolution of the MN unknown expansion coefficients uie(t).
By assembling together all the elemental contributions, the system of ordinary differential equations
governing the evolution in time of the discrete solution can be written as

M
du
dt

+r(u)=0 (7)

where M denotes the mass matrix, u the global vector of the degree of freedom, and r(u) the
residual vector.

In this work, nodal shape functions on equispaced interpolation points have been used. All
the integrals appearing in the elemental equations are evaluated by means of Gauss numerical
quadrature formulae with a number of integration points consistent with the accuracy required.

3. P-MULTIGRID

The convergence rate of standard iterative solvers has a tendency to ‘stagnate,’ i.e. to fail in
effectively reducing the error after a few iterations. This behavior, which is more prominent
for fine meshes, is strictly related to the frequency content of the error in the solution. If the
error is distributed in the high frequency modes, the convergence rate is fast. However, after the
first few iterations, the high frequencies of the error are smoothed out and the convergence rate
deteriorates. In h-multigrid methods, a good convergence rate is obtained by adopting a sequence
of progressively coarser grids, which allows for an effective reduction of the solution error over
the entire frequency field. The p-multigrid approach is based on the same concepts as the standard
h-multigrid method except that lower-order approximations on a single grid serve as coarse levels.
The p variant of the multigrid idea is perfectly suited for high-order accurate methods and can be
easily adopted for both structured and unstructured grids since the interpolation needed to restrict
the solution and to prolongate the error between different levels is local to an individual element
and there is no need for the complex interpolations procedures as in the h-multigrid case.

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 60:847–865
DOI: 10.1002/fld



HIGH-ORDER ACCURATE P-MULTIGRID DG SOLUTION 851

p = 0

p = 1

p = 2

p = 3

Figure 1. V-cycle and W-cycle for p=3 (•: pre-smoothing; ◦: post-smoothing).

p = 2

p = 1

p = 3

p = 0

Figure 2. V-cycle full multigrid for p=3 (•: pre-smoothing; ◦: post-smoothing).

Multigrid methods have proven to be effective techniques for accelerating convergence to steady
state for both linear and nonlinear problems [19, 20] and can be applied with many existing
relaxation techniques (smoother). The variant of the multigrid method suited to nonlinear problems
such as system (2) is called full approximation storage scheme, see e.g. [21].

The various levels can be visited following different paths. In the commonly considered V-cycle
and W-cycle, the algorithm visits the various levels as depicted in Figure 1. At each level, a number
�1 of pre-smoothing iterations is performed prior to restricting the solution to the next coarser
level (bullets), while, on the way back to ‘finer’ levels, a number �2 of post-smoothing iterations
is performed after prolongation (circles). As a further improvement of the algorithm, in the full
multigrid (FMG) algorithm the coarser level solutions are exploited to obtain good initial guess
to initialize the computation of the finer grids. However, converging the solution fully on each
level is not practical because the discretization error on the coarser level is usually above machine
zero. In the proposed algorithm the solution is prolongated to the finer level when a residual-based
criterion is met, as described in [17]. The FMG V-cycle p-multigrid strategy adopted in this work
is depicted in Figure 2.

3.1. P-multigrid cycle

The entire multigrid strategy is based on a recursive application of the so-called two-level
algorithm—in which the ‘exact’ solution on the coarser grid is used to accelerate the solution on
the finer grid. In practice, to avoid the prohibitively expansive exact solution on the coarse grid,
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the two-level algorithm is recursively applied to progressively coarser grids thus arriving at the
previously described V-cycle, W-cycle, and FMG algorithm.

In order to illustrate the two-level algorithm, let us consider a generic nonlinear problem
Ap(up)= fp, where up is the discrete solution vector on a given grid, Ap(up) is the associated
nonlinear algebraic operator and the superscript p indicates the level. Let vp be an approximation
to the solution vector up and define the discrete residual r(vp) by

rp(vp)= fp−Ap(vp)

In the basic two-level multigrid method, the exact solution on the coarse level is used to correct
the solution on the fine level. The correction is performed according to the following steps:

• restrict the solution and the residual to the coarse level,

vp−1
0 = Ĩp−1

p vp, rp−1=Ip−1
p rp(vp) (8)

where Ĩp−1
p and Ip−1

p are the solution and the residual restriction operators from level p to
level p−1, respectively, to be defined in the following;

• compute the forcing term for the coarse level:

sp−1=Ap−1(vp−1
0 )−rp−1 (9)

• solve the coarse level problem:

Ap−1(vp−1)=Ip−1
p fp+sp−1 (10)

• calculate the coarse grid error:

ep−1=vp−1−vp−1
0 (11)

• prolongate the coarse grid error and correct the fine level approximation:

vp =vp+ Ĩpp−1e
p−1 (12)

where Ĩpp−1 is the error prolongation operator.

3.2. Solution and error transfer operators

The restriction and prolongation operators are simply L2 projections onto the low-order and
high-order spaces Vp−1 and Vp, respectively. The low-order level solution is obtained from the
high-order solution by requiring that∫

�
wp−1
h vp−1

h d�=
∫

�
wp−1
h vph d�, ∀wp−1

h ∈Vp−1 (13)

By introducing the matrices

Mp−1=[Mi j ]p−1=
∫

�
�p−1
i �p−1

j d�, Mp−1
p =[Mi j ]p−1

p =
∫

�
�p−1
i �p

j d�

Equation (13) can be rewritten as

Mp−1vp−1=Mp−1
p vp−1
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which shows that vp−1 can be obtained from vp as

vp−1= Ĩp−1
p vp, Ĩp−1

p ≡(Mp−1)−1Mp−1
p (14)

which provides the definition for the solution restriction operator Ĩp−1
p . In a similar fashion, the

L2 prolongation of ep−1 to the higher-order space Vp can be written as

Mpep =Mp
p−1e

p−1

and consequently

ep = Ĩpp−1e
p−1, Ĩpp−1≡(Mp)−1Mp

p−1=(Mp)−1(Mp−1
p )T (15)

3.3. Residual restriction operator

The residual operator at level p can be written in abstract form as rpj = B(�p
j ,v

p), where B(·, ·)
is linear in its first argument. The restricted residual rp−1 is defined as rp−1

j ≡ B(�p−1
j ,vp). An

explicit expression of the residual restriction operator Ip−1
p can be obtained following the approach

proposed by Fidkowski, see e.g. [17]. Provided that the space Vp−1 is a subspace of Vp, a linear
relation exists between the basis functions �p−1 and �p, which can be used to express any basis
function �p−1 as a linear combination of the basis functions �p

j , say

�p−1
i =�i j�

p
j (16)

where �i j are constant coefficients. The matrix a=[�i j ] can be related to the solution prolonga-

tion operator Ĩpp−1 by considering Equation (15) and by expressing �p−1
i in terms of �p

i using
Equation (16), thus obtaining

Ĩpp−1=(Mp)−1Mp
p−1 = (Mp)−1

∫
�

�p
i �p−1

j d�

= (Mp)−1� jk

∫
�

�p
i �p

k d�=(Mp)−1MpaT=aT (17)

where a denotes the matrix of coefficients �i j . By exploiting the linearity of B(·, ·) in its first
argument we then have

rp−1
i = B(�p−1

i ,vp)= B(�i j�
p
j ,v

p)=�i j B(�p
j ,v

p)=�i jr
p
j (18)

i.e. in matrix notation

rp−1=arp = (̃Ipp−1)
Trp

which shows that in fact Ip−1
p = (̃Ipp−1)

T.

For generic basis functions �p
ie, the restriction and prolongation operators defined above are

dense matrices. However, for an orthogonal and hierarchical base, the operators Ĩp−1
p and Ĩpp−1 are

simply given by

Ĩp−1
p =�p,p−1, Ĩpp−1=�p−1,p
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where �i j is the Kronecker symbol. In practice, the dofs of the restricted solution are equal to the
low-order subset of the high-order solution, and the low-order subset of the prolongated error are
the same as the low-order error with null high-order dofs. If Mp and Mp−1 denote the number
of basis functions of a generic element e of order p and p−1, respectively, the restriction and
prolongation are simply achieved as

up−1
ie =up

ie, i=1, . . . ,Mp−1

epie=ep−1
ie , i=1, . . . ,Mp−1

epie=0, i=Mp−1+1, . . . ,Mp

3.4. Semi-implicit RK smoother

In the p-multigrid context the performance of explicit RK schemes as smoothers is quite disap-
pointing [18], especially for high-order polynomial approximations. This led us to introduce some
implicitness in the m-stage explicit RK scheme

u0=un

DO k=1, m

uk =u0−�k�tM−1r(uk−1)

END DO

un+1=um

(19)

by modifying r(uk−1) appearing in the above explicit RK scheme with the linearly semi-implicit
approximation defined in the following. Let us first consider the linearization r̂(u) of the residual
vector

r̂(uk) ≈ r(u0)+ �r(u0)
�u

(uk−u0)

≈ r(u0)+ �r(u0)
�u

(uk−1−u0)+ �r(u0)
�u

(uk−uk−1)

≈ r(uk−1)+ �r(u0)
�u

(uk−uk−1) (20)

which allows to write the linearized residual increment � r̂= r̂(uk)−r(uk−1) as

� r̂= �r(u0)
�u

(uk−uk−1)=[D(u0)+O(u0)](uk−uk−1)=� r̂d +� r̂o

where

� r̂d =D(u0)(uk−uk−1), � r̂o=O(u0)(uk−uk−1)

and D(u0) and O(u0) are the block diagonal and off-diagonal parts of the full Jacobian matrix
�r(u0)/�u, respectively.
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The semi-implicit scheme is obtained by replacing the occurrence of r(uk−1) in (19) with the
linearized residual corresponding to the diagonal part of the full Jacobian matrix

r̂d(uk)=r(uk−1)+� r̂d =r(uk−1)+D(u0)(uk−uk−1)

so that the semi-implicit RK scheme can be written as

u0=un

DO k=1, m

[M+�k�t D(u0)]�uk =−M(uk−1−u0)−�k�tr(uk−1)

uk =uk−1+�uk

END DO

un+1=um

(21)

As a matter of fact, the implicit coupling of the degrees of freedom inside the elements greatly
improves the stability and the smoothing property of the scheme. Further improvement of the
damping properties of the scheme in a multigrid approach is expected from our current research
work on specifically tuned scheme coefficients.

3.5. Backward Euler smoother

At level p=0 an implicit iterative smoother based on the backward Euler scheme is used and
Equation (7) can be linearized in time and written as(

M0

�t
+ �r(u0)

�u

)
�u0+r(u0)=0 (22)

where M0 denotes the mass matrix, u0 the vector of the unknowns and r(u0) the residual vector
at level p=0. The fully coupled linear system is solved by means of the GMRES algorithm and
the incomplete LU factorization preconditioner. As demonstrated in the numerical results, this
fully implicit smoother at the p=0 level, allows for a significant improvement in the convergence
speed.

4. NUMERICAL RESULTS

This section presents the results for three shockless test cases, the inviscid flow through a channel
with a bump, the inviscid flow around a circle, and the inviscid flow around a NACA0012 airfoil.

All the test cases have been computed with the FMG V-cycle and the solution is prolongated
to the finer level when a residual-based criterion is met, as described in Section 3. The various
explicit and semi-implicit smoothers described in Section 3.4 have been analyzed. In all cases, the
performance displayed by the smoothers based on the explicit RK is rather poor, especially for
higher-order accurate polynomial approximations, while the performance of the semi-implicit RK
smoother is instead very satisfactory, especially when associated with the implicit backward Euler
smoother for piecewise constant approximations.
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Four different smoothing strategies have been compared:
ERK: explicit three stages RK scheme (19) with coefficient values �1=0.25, �2=0.6667, �3=

1.0, and with �1=12 and �2=12 pre- and post-smoothing iterations at each level, respectively.
ERK+BE: explicit three stage RK scheme with the same coefficients and the same number of

pre-/post-smoothing iteration as above at each level p>0, but with �0=1 the implicit backward
Euler iterations at level p=0.

S-IRK: semi-implicit five stage RK scheme (19) with coefficient values �1=0.2, �2=0.25,
�3=0.3333, �4=0.4 �5=1.0, and with �1=3 and �2=3 pre- and post-smoothing iterations at
each level, respectively.

S-IRK+BE: semi-implicit five stage RK scheme with the same coefficients as above with �1=1
and �2=1 pre- and post-smoothing iterations at each level p>0, but with �0=1 the implicit
backward Euler iterations at level p=0.

The values of �1, �2, and �0 have been empirically determined in order to minimize the computer
time needed to perform the considered test cases. Notice that the values obtained are independent
of the test case considered. The value of the RK coefficients is instead taken equal to those that
maximize the time accuracy of the method, even if it is well known that these values are not
particularly well suited for a multigrid solution strategy. The L2 norm of the density residual has
been used as a convergence indicator. All the simulations have been run on a Laptop equipped
with an Intel Centrino Duo 1.8GHz system with 2GB RAM.

4.1. Inviscid flow through a channel with a bump

For this test case the domain extends from −1�x�1 in the stream-wise direction and 0�y�0.5
in the cross-stream direction. The shape of the bump is given by

y=
{[1+cos(2	x)]/8 if −1/2�x�1/2

0 elsewhere

The bump geometry is represented using piecewise quadratic polynomials for all solution approx-
imation orders. Slip boundary conditions are imposed on the top and bottom of the channel. At
the inflow, the total temperature, total pressure, and flow angle (0◦) are prescribed and at the
outflow the static pressure is set, resulting in a free-stream Mach number of M=0.4. Two grids
have been generated for this configuration, consisting of 128 (coarse) and 512 (fine) triangular
elements, respectively, as depicted in Figure 3. Figure 4 illustrates the corresponding Mach contours
computed on the fine mesh with a p=9 spatial discretization.

The performance of the smoothers previously described is presented in the following: Figure 5
shows the FMG convergence history of the residual L2 norm plotted versus CPU time for all the
smoothing strategies on the fine mesh with a p=5 spatial discretization. The timing for the p=0
level is not reported because the converged p=0 solution serves as the starting point for the FMG

Figure 3. Meshes used to compute a compressible channel flow over a bump:
128 (left) and 512 (right) triangular elements.
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Figure 4. Channel test case: Mach contours with a p=9 spatial discretization
on the fine mesh (512 triangles).
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Figure 5. Channel test case: residual L2 norm convergence history on the fine mesh. Solid line: ERK
strategy. Dashed line: ERK+BE strategy. Dash-dot line: S-IRK strategy. Dotted line: S-IRK+BE.

algorithm at the higher levels. Note that the previously mentioned residual based criterion is used
to switch to higher levels. As shown in Figure 5, the ‘S-IRK+BE’ solution strategy is the most
efficient in this case. Table I presents the comparison of the performance of the various smoothers
for the channel test case, and, in particular, the differences of cpu time and FMG cycles needed
to converge with a p=5 spatial discretization. The ‘S-IRK+BE’ strategy is the most efficient
regardless of the used mesh and a computational time reduction of ≈85% can be observed with
respect to the ‘ERK’ case.

To study the asymptotic behavior of the residual L2 norm, the FMG solution with the ‘S-IRK+
BE’ strategy has been computed for a p=9 spatial discretization with full convergence on each
level, as depicted in Figure 6. The convergence history is presented in Table II, where the number
of iterations needed to fully converge on each level NFMG(128) and NFMG(512), and the slope of
a linear regression of each convergence curve s(128) and s(512), has been given for the coarse
and the fine mesh, respectively. The table shows the p-multigrid order independent property since
the slope of the convergence curves is almost constant on each level. The table also shows that
the convergence history is h-dependent since the number of iterations required for convergence
increases with the number of elements, as can be expected for a p-multigrid solution strategy.
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Table I. Channel test case: comparison of different p-multigrid smoothing strategies.

Smoother Ne �0 �1,2 NFMG tc(s) �t

ERK 128 12 12 109 188 0
ERK+BE 128 1 12 100 181 −4%
S-IRK 128 3 3 37 69 −64%
S-IRK+BE 128 1 1 29 38 −80%
ERK 512 12 12 228 1710 0
ERK+BE 512 1 12 156 1591 −7%
S-IRK 512 3 3 34 453 −74%
S-IRK+BE 512 1 1 19 235 −87%

Ne is the number of mesh elements; �0 is the number of smoothing iteration at level p=0;
�1,2 is the number of pre-/post-smoothing iterations on each level p>0; NFMG is the
number of FMG cycles to converge; tc is the computational time; �t is the computational
time reduction with respect to ‘ERK’ strategy which is taken as the reference case.
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Figure 6. Channel test case: residual convergence rate (full convergence on each level) as a function of
FMG cycles for p=9 on a mesh of 128 triangles (left) and of 512 triangles (right). Solid line with square
symbols: P1 curve. Dashed line with delta symbols: P2 curve. Dash-dot line with gradient symbols: P3

curve. Dotted line with right-triangle symbols: P4 curve. Long dashed line with left-triangle symbols: P5

curve. Dashed-dot-dot line with diamond symbols: P6 curve. Solid line with circle symbols: P7 curve.
Dashed line with percentage symbols: P8 curve. Dashed-dot line with ‘#’ symbols: P9 curve.

4.2. Inviscid flow around a circle

In the second test case, the flow around a circle is computed for a farfield Mach number M∞ =0.38,
which is close to the limiting value to have a completely subsonic and therefore shockless flow.
The impermeability wall boundary condition is prescribed on the circle, and the circle geometry is
represented using piecewise quadratic polynomials for all solution approximation orders. Details
of the coarse (128 triangles) and of the fine mesh (512 triangles) are displayed in Figure 7,
while Figure 8 illustrates the Mach contours computed on the coarse mesh with a p=9 spatial
discretization.

The performance of the various smoothing strategies is analyzed in Figure 9, which presents the
residual L2 norm convergence behavior as a function of cpu time for each smoother on the coarse
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Table II. Channel test case: FMG cycles needed to converge on each level and slope of the convergence
curves for the ‘S-IRK+BE’ smoothing strategy.

P1 P2 P3 P4 P5 P6 P7 P8 P9

NFMG(128) 28 18 18 16 17 16 16 15 16
s(128) −0.29 −0.4 −0.38 −0.40 −0.38 −0.4 −0.38 −0.39 −0.39
NFMG(512) 37 29 27 24 23 23 22 21 21
s(512) −0.22 −0.23 −0.21 −0.22 −0.23 −0.23 −0.24 −0.23 −0.23

Pk is the polynomial order with 1�k�9; NFMG(128) and NFMG(512) are the number of iterations needed
to converge on the coarse and fine mesh; s(128) and s(512) are the slopes of the linear regression of each
convergence curve.

Figure 7. Meshes used to compute an inviscid flow around a circle: 128 (left)
and 512 (right) triangular elements.

mesh with a p=5 spatial discretization, and in Table III, which shows the cpu time and the FMG
cycles needed to converge with a p=5 spatial discretization for both the coarse and fine meshes.
Also in this case, the ‘S-IRK+BE’ strategy is the most efficient regardless of the adopted mesh,
and a computational time reduction of ≈88% can be observed with respect to the ‘ERK’ case.

Figure 10 illustrates the residual convergence rate as a function of FMG cycles at p=9 obtained
by using ‘S-IRK+BE’ strategy. In order to put in evidence the p-multigrid order independent
property, the residual is in this case fully converged on each approximation level. Table IV shows
both the number of iterations and the slope of the convergence curves for the coarse and fine
meshes. Notice that in this case the p-multigrid convergence rate slightly improves with increasing
approximation order.

4.3. Inviscid subsonic flow around a NACA0012 airfoil

In the last test case the inviscid flow around a NACA0012 airfoil is computed for a farfield Mach
number M∞ =0.5 and an angle of attack �=2◦. The impermeability condition is prescribed on
the airfoil surface, and the boundary is represented using piecewise quadratic polynomials for all
solution approximation orders. The mesh (512 triangular elements) and the Mach contour obtained
with a p=9 spatial discretization are depicted in Figure 11.
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Figure 8. Circle test case: Mach contours for p=9 on a mesh of 128 triangles.
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Figure 9. Circle test case: residual L2 norm convergence history on the coarse mesh. Solid line: ERK
strategy. Dashed line: ERK+BE strategy. Dash-dot line: S-IRK strategy. Dotted line: S-IRK+BE.

The cpu time and the number of FMG cycles needed to converge with a p=5 spatial discretiza-
tion are shown in Table V. The ‘S-IRK+BE’ strategy is again the most efficient with a compu-
tational time reduction of ≈78% with respect to the ‘ERK’ case. This behavior can be observed
also in the left part of Figure 12, which presents the residual L2 norm convergence curves of
the various smoothing strategies as a function of cpu time. The right part of Figure 12, instead,
illustrates the residual L2 norm convergence rate as a function of FMG cycles obtained by
using the ‘S-IRK+BE’ strategy at p=9. Also in this case, the residual is fully converged on
each level in order to show the p-multigrid order independent property. The convergence history
is finally given in Table VI both as a function of number of FMG cycles needed for conver-
gence and of convergence slope. Also in this case the p-multigrid convergence rate is perfectly
satisfactory.
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Table III. Circle test case: comparison of different p-multigrid smoothing strategies.

Smoother Ne �0 �1,2 NFMG tc(s) �t

ERK 128 12 12 71 149 0
ERK+BE 128 1 12 68 136 −9%
S-IRK 128 3 3 19 24 −84%
S-IRK+BE 128 1 1 18 21 −86%
ERK 512 12 12 111 892 0
ERK+BE 512 1 12 62 492 −45%
S-IRK 512 3 3 30 247 −73%
S-IRK+BE 512 1 1 22 98 −90%

Ne is the number of mesh elements; �0 is the number of smoothing iterations at level p=0; �1,2 is the
number of pre-/post-smoothing iterations at each level p>0; NFMG is the number of FMG cycles; tc is the
computational time; �t is the computational time reduction with respect to ‘ERK’ strategy which is taken as
reference case.

Iterations

L
o

g
(R

es
id

u
al

E
rr

o
r)

5 10 15 20
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

P1
P2
P3
P4
P5
P6
P7
P8
P9

Iterations

L
o

g
(R

es
id

u
al

E
rr

or
)

5 10 15 20 25
-9

-8

-7

-6

-5

-4

-3

-2

-1

0

P1
P2
P3
P4
P5
P6
P7
P8
P9

Figure 10. Circle test case: residual convergence rate (full convergence on each level) as a function of
FMG cycles for p=9 on a mesh of 128 triangles (left) and of 512 triangles (right). Solid line with square
symbols: P1 curve. Dashed line with delta symbols: P2 curve. Dash-dot line with gradient symbols: P3

curve. Dotted line with right-triangle symbols: P4 curve. Long dashed line with left-triangle symbols: P5

curve. Dashed-dot-dot line with diamond symbols: P6 curve. Solid line with circle symbols: P7 curve.
Dashed line with percentage symbols: P8 curve. Dashed-dot line with ‘#’ symbols: P9 curve.

Table IV. Circle test case: FMG cycles needed to converge on each level and slope of the convergence
curves for the ‘S-IRK+BE’ smoothing strategy.

P1 P2 P3 P4 P5 P6 P7 P8 P9

NFMG(128) 14 15 10 10 9 10 7 6 8
s(128) −0.54 −0.42 −0.64 −0.61 −0.69 −0.57 −0.86 −1.02 −0.72
NFMG(512) 21 18 14 13 10 11 9 6 6
s(512) −0.35 −0.35 −0.41 −0.43 −0.53 −0.47 −0.57 −0.86 −0.68

Pk is the polynomial order with 1�k�9; NFMG(128) and NFMG(512) are the number of iterations needed
to converge on the grid with 128 and 512 elements, respectively; s(128) and s(512) are the slopes of the
convergence curves.
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Figure 11. NACA0012 airfoil test case: mesh (512 triangular elements) used to compute
an inviscid flow around a NACA0012 airfoil (left) and the corresponding Mach contours

with a p=9 spatial discretization (right).

Table V. NACA0012 airfoil test case: comparison of different p-multigrid smoothing strategies.

Smoother �0 �1,2 NFMG tc(s) �t

ERK 12 12 106 822 0
ERK+BE 1 12 69 575 −31%
S-IRK 3 3 20 212 −75%
S-IRK+BE 1 1 14 187 −78%

�0 is the number of smoothing iterations at level p=0; �1,2 is the number of pre-/post-smoothing
iterations at each level p>0; NFMG is the number of FMG cycles; tc is the computational time; �t is
the computational time reduction with respect to ‘ERK’ strategy which is taken as reference.

5. CONCLUSIONS

A p-multigrid discontinuous Galerkin (DG) algorithm for the solution of the steady-state Euler
equations has been proposed, which employs either explicit or semi-implicit Runge–Kutta (RK)
smoothers for the high-order polynomial approximations and possibly the implicit backward Euler
smoother for the piecewise constant approximation.

The performance of the various p-multigrid smoothers considered has been evaluated by
comparing the results obtained in the computation of three different shockless test cases. In all
the test cases considered, the best performance has been obtained with the S-IRK+BE smoother,
which allows for a very significant reduction of computing time with respect to the simple ERK
smoother. The saving can be as high as 90% and is always greater than 78%. It is, however, to be
noticed that the computational resources needed by the backward Euler scheme at the p=0 level
are not significant for the small 2D test cases here considered, but might become considerable for
complex 3D problems. In the latter case, the computational resources required by the solution of
the linear system at the p=0 level could be a significant fraction of the overall computational
cost, and the simpler S-IRK smoother could be more efficient than S-IRK+BE. Notice in fact
that, even for the small problems considered here, the computational gain offered by the S-IRK
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Figure 12. NACA0012 airfoil test case: residual convergence history as a function of cpu time of different
smoothers (left). Solid line: ERK strategy. Dashed line: ERK+BE strategy. Dash-dot line: S-IRK strategy.
Dotted line: S-IRK+BE. Residual convergence rate (full convergence on each level) as a function of FMG
cycles for the ‘S-IRK+BE’ strategy (right). Solid line with square symbols: P1 curve. Dashed line with
delta symbols: P2 curve. Dash-dot line with gradient symbols: P3 curve. Dotted line with right-triangle
symbols: P4 curve. Long dashed line with left-triangle symbols: P5 curve. Dashed-dot-dot line with
diamond symbols: P6 curve. Solid line with circle symbols: P7 curve. Dashed line with percentage

symbols: P8 curve. Dashed-dot line with ‘#’ symbols: P9 curve.

Table VI. NACA0012 airfoil test case: FMG cycles needed to converge on each level and slope
of the convergence curves for the ‘S-IRK+BE’ smoothing strategy. Pk is the polynomial
order with 1�k�9; NFMG(512) is the number of FMG cycles needed to converge; s(512) is

the slope of each convergence curve.

P1 P2 P3 P4 P5 P6 P7 P8 P9

NFMG(512) 34 25 20 16 15 12 12 12 13
s(512) −0.2 −0.26 −0.3 −0.35 −0.38 −0.38 −0.4 −0.37 −0.34

smoother is still remarkable, and ranges from a minimum of 64% to a maximum of 84%, as shown
in the previous section.

The performance of the p-multigrid algorithm is here assessed on simple shockless flows, which
can be computed with the ‘standard’ DG space discretization method described in Section 2.
The computation of shocked flows requires instead some sort of oscillation control mechanism,
however, an effective oscillation control technique for very high-order approximation such as
those considered here is still an open problem, which is currently under investigation by many
research groups, even if some effective methods to deal with shocked flows for moderately high-
order approximations have been proposed in the literature. The effectiveness of the proposed
method for more complex shocked flows, which can be expected to be strictly connected with
the type of oscillation control mechanism employed, will be the object of a future research
effort.
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Further significant saving in the computational resources required to reach a prescribed accuracy
could be obtained by combining the proposed p-multigrid solution method with a p-adaptive
solution strategy, but this issue has not been studied in the present work.

Work is under way to extend this algorithm to grids of quadrilateral elements and to the 3D
case, to investigate other possible smoothing procedures, and to apply the proposed method to the
solution of the compressible Navier–Stokes and RANS equations.
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